What Is Edge Computing?

Edge Computing allows data produced by Internet of Things (IoT) devices to be processed closer to where it is created instead of sending it across long routes to data centers or clouds.

Doing this computing closer to the edge of the network lets organisations analyse important data in near real-time, a need of organisations across many industries, including manufacturing, health care, telecommunications and finance.

“In most scenarios, the presumption that everything will be in the cloud with a strong and stable fat pipe between the cloud and the edge device, that’s just not realistic,” says Helder Antunes, senior director of corporate strategic innovation at Cisco.

What exactly is Edge Computing?

Edge computing is a “mesh network of micro data centers that process or store critical data locally and push all received data to a central data center or cloud storage repository, in a footprint of less than 100 square feet,” according to research firm IDC.

It is typically referred to in IoT use cases, where edge devices would collect data, sometimes massive amounts of it, and send it all to a data center or cloud for processing. Edge computing triages the data locally so some of it is processed locally, reducing the backhaul traffic to the central repository.

Typically, this is done by the IoT devices transferring the data to a local device that includes compute, storage and network connectivity in a small form factor. Data is processed at the edge, and all or a portion of it is sent to the central processing or storage repository in a corporate data center, co-location facility or IaaS cloud.

Why does Edge Computing matter?

Edge computing deployments are ideal in a variety of circumstances. One is when IoT devices have poor connectivity and it’s not efficient for IoT devices to be constantly connected to a central cloud.

Other use cases have to do with latency-sensitive processing of information. Edge computing reduces latency because data does not have to traverse over a network to a data center or cloud for processing. This is ideal for situations where latencies of milliseconds can be untenable, such as in financial services or manufacturing.

Here’s an example of an edge computing deployment: An oil rig in the ocean that has thousands of sensors producing large amounts of data, most of which could be inconsequential; perhaps it is data that confirms systems are working properly.

That data doesn’t necessarily need to be sent over a network as soon as its produced, so instead the local edge computing system compiles the data and sends daily reports to a central data center or cloud for long-term storage. By only sending important data over the network, the edge computing system reduces the data traversing the network.

Another use case for edge computing has been the buildout of next-gen 5G cellular networks by telecommunication companies. Kelly Quinn, research manager at IDC who studies edge computing, predicts that as telecom providers build 5G into their wireless networks they will increasingly add micro-data centers that are either integrated into or located adjacent to 5G towers. Business customers would be able to own or rent space in these micro-data centers to do edge computing, then have direct access to a gateway into the telecom provider’s broader network, which could connect to a public IaaS cloud provider.

Edge vs. Fog Computing

As the edge computing market takes shape, there’s an important term related to edge that is catching on: fog computing.

Fog refers to the network connections between edge devices and the cloud. Edge, on the other hand, refers more specifically to the computational processes being done close to the edge devices. So, fog includes edge computing, but fog would also incorporate the network needed to get processed data to its final destination.

Backers of the OpenFog Consortium, an organization headed by Cisco, Intel, Microsoft, Dell EMC and academic institutions like Princeton and Purdue universities, are developing reference architectures for fog and edge computing deployments.

Some have predicted that edge computing could displace the cloud. But Mung Chaing, dean of Purdue University’s School of Engineering and co-chair of the OpenFog Consortium, believes that no single computing domain will dominate; rather there will be a continuum. Edge and fog computing are useful when real-time analysis of field data is required.

Edge Computing Security

There are two sides of the edge computing security coin. Some argue that security is theoretically better in an edge computing environment because data is not traveling over a network, and it’s staying closer to where it was created. The less data in a corporate data center or cloud environment, the less data there is to be vulnerable if one of those environments is comprised.

The flip side of that is some believe edge computing is inherently less secure because the edge devices themselves can be more vulnerable. In designing any edge or fog computing deployment, therefore, security must be a paramount. Data encryption, access control and use of virtual private network tunneling are important elements in protecting edge computing systems.

Edge Computing Terms and Definitions

Like most technology areas, edge computing has its own lexicon. Here are brief definitions of some of the more commonly used terms

  • Edge devices: These can be any device that produces data. These could be sensors, industrial machines or other devices that produce or collect data.
  • Edge: What the edge is depends on the use case. In a telecommunications field, perhaps the edge is a cell phone or maybe it’s a cell tower. In an automotive scenario, the edge of the network could be a car. In manufacturing, it could be a machine on a shop floor; in enterprise IT, the edge could be a laptop.
  • Edge gateway: A gateway is the buffer between where edge computing processing is done and the broader fog network. The gateway is the window into the larger environment beyond the edge of the network.
  • Fat client: Software that can do some data processing in edge devices. This is opposed to a thin client, which would merely transfer data.
  • Edge computing equipment: Edge computing uses a range of existing and new equipment. Many devices, sensors and machines can be outfitted to work in an edge computing environment by simply making them Internet-accessible. Cisco and other hardware vendors have a line of ruggedized network equipment that has hardened exteriors meant to be used in field environments. A range of computer servers, converged systems and even storage-based hardware systems like Amazon Web Service’s Snowball can be used in edge computing deployments.
  • Mobile edge computing: This refers to the buildout of edge computing systems in telecommunications systems, particularly 5G scenarios.

IBM:        Network World:

You Might Also Read: 

IBM Breakthrough in Quantum Computing:

Has Cognitive Computing Arrived?:

Cognitive Computing is Advancing (£):

 
« Mini Drones That Can See In The Dark
Russia Attacked By ‘Full Scale Cyber War’ »

CyberSecurity Jobsite
Perimeter 81

Directory of Suppliers

ZenGRC

ZenGRC

ZenGRC - the first, easy-to-use, enterprise-grade information security solution for compliance and risk management - offers businesses efficient control tracking, testing, and enforcement.

Clayden Law

Clayden Law

Clayden Law advise global businesses that buy and sell technology products and services. We are experts in information technology, data privacy and cybersecurity law.

The PC Support Group

The PC Support Group

A partnership with The PC Support Group delivers improved productivity, reduced costs and protects your business through exceptional IT, telecoms and cybersecurity services.

Cyber Security Supplier Directory

Cyber Security Supplier Directory

Our Supplier Directory lists 6,000+ specialist cyber security service providers in 128 countries worldwide. IS YOUR ORGANISATION LISTED?

CYRIN

CYRIN

CYRIN® Cyber Range. Real Tools, Real Attacks, Real Scenarios. See why leading educational institutions and companies in the U.S. have begun to adopt the CYRIN® system.

CyberVista

CyberVista

CyberVista is a cybersecurity training education and workforce development company. Our mission is to eliminate the skills gap by creating job ready professionals.

NetMonastery DNIF

NetMonastery DNIF

NetMonastery is a network security company which assists enterprises in securing their network and applications by detecting threats in real time.

Netwrix

Netwrix

Netwrix empowers information security and governance professionals to identify and protect sensitive data to reduce the risk of a breach.

Cyber Observer

Cyber Observer

Cyber Observer’s team specializes in providing corporate officers with comprehensive, visual, real-time performance overview, critical security control (CSC) analysis.

AKS IT Services

AKS IT Services

AKS IT Services (an ISO 9001:2015 and ISO 27001:2013 certified company) is a leading IT Security Services and Solutions provider.

NLnet Labs

NLnet Labs

NLnet Labs is a not-for-profit foundation with a long heritage in research and development, Internet architecture and governance, as well as security in the area of DNS and inter-domain routing.

Netsafe

Netsafe

Netsafe is an independent, non-profit New Zealand organisation focused on online safety. We help people stay safe online by providing online safety education, advice and support.

DeepSeas

DeepSeas

DeepSeas is the result of a merger between Security On-Demand (SOD) and the commercial Managed Threat Services (MTS) business of Booz Allen Hamilton.

Crosspoint Capital Partners

Crosspoint Capital Partners

Crosspoint Capital Partners is a private equity investment firm focused on the cybersecurity and privacy sectors.

cleverDome

cleverDome

cleverDome has created the first community built and proven model that redefines the standards for protecting the most confidential data and information of consumers in the cloud.

Institute for Security and Technology (IST)

Institute for Security and Technology (IST)

The Institute for Security and Technology's goal is to provide the tools and insights needed for companies and governments to outpace emerging global security threats.

Kordia

Kordia

Kordia is a leading provider of mission-critical technology solutions throughout Australasia. We have the most comprehensive cyber security offering in New Zealand.

OSI Security

OSI Security

OSI Security's primary services include penetration testing, security auditing, web application security testing and risk management.

watchTowr

watchTowr

Continuous Attack Surface Testing, with the watchTowr Platform. The future of Attack Surface Management.

PROVINTELL Cyber Security

PROVINTELL Cyber Security

PROVINTELL is a Managed Security Service Provider (MSSP) specialising in Next-Gen Cyber Defense and Response to detect and respond to threats.

TrustCloud

TrustCloud

TrustCloud is a global company specializing in the orchestration and custody of secure digital transactions including identification, signature, payments, and electronic custody.