Key Trends In Machine Learning & Artificial Intelligence

You can hardly talk to a technology executive or developer today without talking about artificial intelligence, machine learning or bots. While everyone agrees on the importance of machine learning to their company and industry, few companies have adequate expertise to do what they wanted the technology to do. Here are some insights into what we can expect in the coming years around ML and AI.

Every application is going to be an intelligent application

If your company isn’t using machine learning to detect anomalies, recommend products or predict churn, you will start doing it soon. Because of the rapid generation of new data, availability of massive amounts of compute power and ease of use of new ML platforms (whether it is from large technology companies like Amazon, Google and Microsoft or from startups like Dato), we expect to see more and more applications that generate real-time predictions and continuously get better over time. Of the 100 early-stage startups we have met in the last six months, 90+ percent of them are already planning to use ML to deliver a better experience for their customers.

Intelligent apps are built on innovations in micro-intelligence and middle-ware services

Companies today fall into two categories (broadly): those that are building some form of ML/AI technology or those that are using ML/AI technologies in their applications and services. There is a tremendous amount of innovation happening in the building block services (aka, middle-ware services) that include both data preparation services and learning services or models-as-a-service providers.

Understanding the “why” behind the “what” is often another critical component of working with artificial intelligence.

With the advent of micro-services and the ability to seamlessly interface with them through REST APIs, there is an increasing trend for the learning services and ML algorithms to be used and re-used — as opposed to having to be re-written from scratch over and over again.

For example, Algorithmia runs a marketplace for algorithms that any intelligent application can use as needed. Combining these algorithms and models with a specific slice of data (use-case specific within a particular vertical) is what we call micro-intelligence, which can be seamlessly incorporated into applications.

Trust and transparency are absolutely critical in a world of ML and AI

Several high-profile experiments with ML and AI came into the spotlight in the last year. Examples include Microsoft Tay, Google DeepMind AlphaGo, Facebook M and the increasing number of chat-bots of all kinds. The rise of natural user interfaces (voice, chat and vision) provide very interesting options and opportunities for us as human beings to interact with virtual assistants (Apple Siri, Amazon Alexa, Microsoft Cortana and Viv).

There are also some more troubling examples of how we interact with artificial intelligences. For example, at the end of one online course at Georgia Tech, students were surprised to learn that one of the teaching assistants (named Jill Watson after the IBM Watson technology) with whom they were interacting throughout the semester was a chat-bot and not a human being.

As much as this shows the power of technology and innovation, it also brings to mind many questions around the rules of engagement in terms of trust and transparency in a world of bots, ML and AI.

Understanding the “why” behind the “what” is often another critical component of working with artificial intelligence. A doctor or a patient will not be happy with a diagnosis that tells them they have a 75 percent likelihood of cancer and they should use drug X to treat it. They need to understand which pieces of information came together to create that prediction or answer.

We absolutely believe that going forward we should have full transparency with regards to ML and think through the ethical implications of the technology advances that will be an integral part of our lives and our society moving forward.

We need human beings in the loop

There have been a number of conversations on whether we should be afraid of AI-based machines taking over the world. As much as advances in ML and AI are going to help with automation where it makes sense, it is also true that we will absolutely need to have human beings in the loop to create the right end-to-end customer experiences.

At one point, Redfin, a US real estae / esate agency company experimented with sending ML-generated recommendations to its users. These machine-generated recommendations had a slightly higher engagement rate than users’ own search and alert filters. However, the real improvement came when Redfin asked its agents to review recommendations before they were sent out. After agents reviewed the recommendations, Redfin was able to use the agents’ modifications as additional training data, and the click-through rate on recommended houses rose significantly.

Splunk re-emphasized this point by describing how IT professionals play a key role in deploying and using Splunk to help them do their jobs better and more efficiently. Without these humans in the loop, customers won’t get the most value out of Splunk.

Another company, Spare5, is a good example of how humans are sometimes required to train ML models by correcting and classifying the data going into the model. Another common adage in ML is garbage in, garbage out. The quality and integrity of data is critical to build high-quality models.

ML is a critical ingredient for intelligent applications… but you may not need ML on Day One

Machine learning is an integral part and critical ingredient in building intelligent applications, but the most important goals in building intelligent apps are to build applications or services that resonate with your customers, provide an easy way for your customer to use your service and continuously get better over time.

To use ML and AI effectively, you often need to have a large dataset. The advice from people who have done this successfully is to start with the application and experience that you want to deliver, and, in the process, think about how ML can enhance your application and what dataset you need to collect to build the best experience for your customers.

We have come a long way in the journey toward every app being an intelligent app, but we are still in the early stages of the journey. As Oren Etzioni, CEO of the Allen Institute for AI, said, we have made tremendous progress in AI and ML, but declaring success in ML today is like “climbing to the top of a tree and declaring we are going to the moon.”

TechCrunch

 

 

« Companies See Cyber Threats But Can’t Deal With Them
Data Protection Tips for Proposed US Cybersecurity Laws »

CyberSecurity Jobsite
Perimeter 81

Directory of Suppliers

BackupVault

BackupVault

BackupVault is a leading provider of completely automatic, fully encrypted online, cloud backup.

Practice Labs

Practice Labs

Practice Labs is an IT competency hub, where live-lab environments give access to real equipment for hands-on practice of essential cybersecurity skills.

Resecurity, Inc.

Resecurity, Inc.

Resecurity is a cybersecurity company that delivers a unified platform for endpoint protection, risk management, and cyber threat intelligence.

Jooble

Jooble

Jooble is a job search aggregator operating in 71 countries worldwide. We simplify the job search process by displaying active job ads from major job boards and career sites across the internet.

MIRACL

MIRACL

MIRACL provides the world’s only single step Multi-Factor Authentication (MFA) which can replace passwords on 100% of mobiles, desktops or even Smart TVs.

ZenGRC

ZenGRC

ZenGRC - the first, easy-to-use, enterprise-grade information security solution for compliance and risk management - offers businesses efficient control tracking, testing, and enforcement.

CSI Consulting Services

CSI Consulting Services

Get Advice From The Experts: * Training * Penetration Testing * Data Governance * GDPR Compliance. Connecting you to the best in the business.

DigitalStakeout

DigitalStakeout

DigitalStakeout enables cyber security professionals to reduce cyber risk to their organization with proactive security solutions, providing immediate improvement in security posture and ROI.

Syxsense

Syxsense

Syxsense brings together endpoint management and security for greater efficiency and collaboration between IT management and security teams.

Cyber Security Supplier Directory

Cyber Security Supplier Directory

Free Access: Cyber Security Supplier Directory listing 5,000+ specialist service providers.

Exodus Intelligence

Exodus Intelligence

Exodus Intelligence are an industry leading provider of exclusive zero-day vulnerability intelligence, exploits, defensive guidance, and vulnerability research trends.

devWerks

devWerks

devWerks is an innovative software company specialising in software development and IT security.

Astra

Astra

Astra's website security solution provides real-time protection against malware, hackers, SQLi, XSS, DDoS, LFI and RFI.

Referentia

Referentia

Referentia leads the development of critical infrastructure solutions that benefit society, including cyber security and network performance management.

Kivu Consulting

Kivu Consulting

Kivu Consulting combines technical and legal expertise to deliver data breach response, investigative, discovery and forensic solutions worldwide.

White Bullet

White Bullet

White Bullet’s risk profiling AI detects, dynamically scores and flags unsafe domains, apps and advertising.

Cohesity

Cohesity

Cohesity radically simplifies the way businesses back up, manage, protect, and extract value from their data—in the data center, at the edge, and in the cloud.

Mias TSCM

Mias TSCM

Mias TSCM provides Cyber TSCM (Technical Surveillance Countermeasures) bug sweeping services.