New Microchip Increases Military Intelligence

A new microchip could change life on the battlefield for US troops by bringing the massive data crunching power of multi-computer neural networks, a dream of the 1970s and 80s, into handheld devices.

The chip, announced by a team of researchers from MIT and funded by the Defense Advanced Research Projects Agency, or DARPA, could enable a smartphone-sized device to perform deep-learning functions.

What can the military do with deep learning? Effectively executing complex operations in places like Syria, Iraq, and Afghanistan is no longer just a matter of guts and glory. It’s also dependent on accessing and processing information in real time. The military has an abundance of data but always claims a shortage of useful intelligence. Consider that in 2011, during the height of the Iraq and Afghanistan Wars, the US Air Force was processing 1,500 hours of full-motion video and 1,500 still images taken from aerial drones every day.

When satellites or drones collect high-resolution photographs or video, it’s human operators that have to do the job of classifying all the objects in that footage. Did someone just move a missile launcher within range of a forward operating base, or is that just a strangely shaped pile of debris? Is that white van the same one that was on that street during last month’s IED attack? Or is it a different one? Is that bearded insurgent Abu Bakr al-Baghdadi or just a regular radical?

“Full exploitation of this information is a major challenge,” officials at DARPA wrote in a 2009 announcement on deep learning. “Human observation and analysis of [intelligence, surveillance and reconnaissance] assets is essential, but the training of humans is both expensive and time-consuming. Human performance also varies due to individuals’ capabilities and training, fatigue, boredom, and human attentional capacity.”

The promise of mobile deep learning for the military is in shrinking large “neural networks” into the palm of a soldier’s hand.  Neural networks are a technology that emerged in the 1970s to great hype and fanfare. They’re a method of information processing inspired by organic central nervous systems. Nodes establish links to other nodes in patterns to hold information in a sort of code somewhat the way that the synaptic connections in your brain hold information.

Fitting neural networks (of the sort that perform deep learning) into smaller platforms could enable drones to do that sort of object recognition on board, without sending imagery back to an overworked human analyst or a data processing center halfway around the world. It could also enable a team of special operators to do the same, using their own drones, portable cameras, or other devices, to make positive identifications of people or objects without human analysts far away looking at the footage.

Imagine a special operator getting a push notification the moment that a small camera on the other side of town detects–and correctly identifies–a particular person walking into a particular house. That sort of capability would require computers that are small enough to be inconspicuous in the sorts of places soldiers operate but that can also learn to recognize different people or objects. Those are among the many military applications for deep learning and neural networks.
 
In the seventies and throughout the eighties, the processing power didn’t exist to turn the concept of computer neural networks into anything useful in an information technology environment. Neural networks have since re-emerged thanks to the efforts of Google (and researchers like Andrew Ng at Stanford) who put them back on the map in 2012 with the announcement that they had used neural networks and deep learning to improve by 70 percent the ability of artificial intelligence to correctly recognize objects.  

But neural networks remain energy intensive and relatively inefficient. To do deep learning right, you currently need computational resources in the form of servers or large computers. That means if you want to access deep learning processes on your smartphone it probably has to be connected to the Internet and thus a different computer. That’s not ideal for anyone working from a forward operating base or disaster zone.

“Right now, the networks are pretty complex and are mostly run on high-power [graphical processing units]. You can imagine that if you can bring that functionality to your cell phone or embedded devices, you could still operate even if you don’t have a Wi-Fi connection. You might also want to process locally for privacy reasons. Processing it on your phone also avoids any transmission latency, so that you can react much faster for certain applications.” MIT’s Vivienne Sze explained in a press release. It also would allow for compartmentalizing sensitive intelligence or mission information from wider dissemination.  

Here’s how it works: the MIT researchers’ breakthrough microchip, dubbed “Eyeriss,” minimizes the number of times that the chip’s 168 cores have to access a memory bank, a process that eats away at energy efficiency in conventional graphical processing units, or GPU, chips. Every core in Eyeriss has its own memory. In effect, it’s like creating the functionality of 168 chips on a wafer where there was just one. That could lead to a pocket–sized device that can perform deep learning functions independently, potentially bringing a lot more brains into the devices that soldiers carry with them into the precision-guided counterterrorism battles of today and tomorrow.

DefenseOne:

« Cybersecurity Is A Great Career Choice
Twitter Steps Up Efforts To Combat ISIS »

ManageEngine
CyberSecurity Jobsite
Check Point

Directory of Suppliers

CSI Consulting Services

CSI Consulting Services

Get Advice From The Experts: * Training * Penetration Testing * Data Governance * GDPR Compliance. Connecting you to the best in the business.

Syxsense

Syxsense

Syxsense brings together endpoint management and security for greater efficiency and collaboration between IT management and security teams.

North Infosec Testing (North IT)

North Infosec Testing (North IT)

North IT (North Infosec Testing) are an award-winning provider of web, software, and application penetration testing.

Resecurity

Resecurity

Resecurity is a cybersecurity company that delivers a unified platform for endpoint protection, risk management, and cyber threat intelligence.

LockLizard

LockLizard

Locklizard provides PDF DRM software that protects PDF documents from unauthorized access and misuse. Share and sell documents securely - prevent document leakage, sharing and piracy.

Certification Europe

Certification Europe

Certification Europe (now Amtivo Ireland) is an accredited certification body which provides ISO management system certification, including ISO 27001.

UpGuard

UpGuard

UpGuard's discovery engine brings visibility to complex IT environments, enabling teams to identify risk, confirm compliance and make business safer.

Lares Consulting

Lares Consulting

Lares is a security consulting firm that helps companies secure electronic, physical, intellectual, and financial assets through a unique blend of assessment, testing and coaching.

ABB

ABB

ABB is a pioneering technology leader in industrial digitalization. Services include cyber security for industrial control systems IoT.

4iQ

4iQ

4iQ fuses surface, social, deep and dark web sources to research and assess risks to people, infrastructure, intellectual property and reputation.

ERNW

ERNW

ERNW is an independent IT Security service provider with a focus on consulting and testing in all areas of IT security.

Avansic

Avansic

Avansic is a leading provider of e-discovery and digital forensics services to attorneys, litigation support teams, and business communities.

GreyCampus

GreyCampus

GreyCampus is a leading provider of training for working professionals in the areas of Project Management, Big Data, Data Science, Service Management, Quality Management and Information Security.

Cyber Risk Opportunities

Cyber Risk Opportunities

Cyber Risk Opportunities was formed to enable middle-market executives to become more proficient cyber risk managers so their organizations can thrive.

Center for Long-Term Cybersecurity (CLTC)

Center for Long-Term Cybersecurity (CLTC)

The Center for Long-Term Cybersecurity is developing and shaping cybersecurity research and practice based on a long-term vision of the internet and its future.

Procilon Group

Procilon Group

Procilon Group specialize in the development of cryptographic software as well as strategic advice on information security and data protection.

Rule4

Rule4

Rule4 is a global professional services firm that provides practical, real-world knowledge and solutions in areas including cybersecurity, AI, Machine Learning and industrial control systems.

NetSPI

NetSPI

NetSPI is an information security penetration testing and vulnerability assessment management advisory firm.

Deutsche Gesellschaft für Cybersicherheit (DGC)

Deutsche Gesellschaft für Cybersicherheit (DGC)

As a leading provider of cyber security, DGC supports companies in taking advantage of the opportunities offered by the digital transformation – and in minimizing the associated risks.

Sev1Tech

Sev1Tech

Sev1Tech is a leading provider of IT modernization, cloud, cybersecurity, engineering, fielding, training, and program support services.

Insurica

Insurica

INSURICA is a full-service insurance agency built upon a tradition of integrity, industry leadership, and excellence.